Abstract

Non-orthogonal multiple access (NOMA) is one of the promising radio access techniques for further cellular enhancements toward 5G. Compared to orthogonal multiple access (OMA) such as orthogonal frequency-division multiple access (OFDMA), large performance gains were confirmed via system-level simulations. However, NOMA link-level simulations and the design of the receiver remain of great importance to validate NOMA performance gains. In this paper, we evaluate downlink NOMA link-level performance with multiple receiver designs and propose a novel NOMA transmitter and receiver design, where the signals of multi-users are jointly modulated at transmitter side and detected at receiver side. The predominant advantage of the proposed scheme is that at receiver side interference cancellation to the interference signal is not needed, thus low complexity is achieved. The performances of codeword-level SIC, symbol-level SIC and the proposed receiver are evaluated and compared with ideal SIC. Simulation results show that compared with ideal SIC, downlink NOMA link-level performance depends on actual receiver design and the difference in the power ratio split between the cell edge user and cell center user. In particular, it is shown that codeword-level SIC and the proposed receiver can both provide a good performance even when the power ratio difference between the cell center user and cell edge user is small and with real channel estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.