Abstract

This paper evaluates the performance of a virtual user pairing scheme that efficiently utilizes the spectrum of unpaired users in non-orthogonal multiple access (NOMA), termed as VP-NOMA. The scheme aims at utilizing the frequency bands of those users which remain unpaired due to the non-uniform distribution of users in a cellular area. We consider a case where the cell edge users are more than the cell center users, so that complete one-to-one correspondence does not exist between all cell center and cell edge users to be accommodated/paired using conventional NOMA (C-NOMA) user pairing. Thus, some cell edge users remain unpaired, and are served using conventional multiple access (OMA) schemes. In such scenario, VP-NOMA pairs a single cell center user with two or more clustered (closely located) cell edge users over non-overlapping frequency bands, thus enabling the cell center user to efficiently use the frequency bands of these previously unpaired cell edge users. Performance of VP-NOMA in terms of ergodic sum capacity (ESC), outage probability (OP), and outage sum capacity (OSC), is analyzed through comprehensive mathematical derivations and simulations for a generalized system model. Moreover, the mathematical analysis is validated through close concordance between analytical and simulation results of ESC, OP, and OSC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.