Abstract

A 5–30 Gb/s receiver analog front-end (AFE) cascading transimpedance amplifier (TIA) and continuous-time linear equalizer (CTLE) were implemented using a Taiwan Semiconductor 180 nm process. The system comprises a two-stage differential input pair CTLE, TIA, and a differential termination resistor Rm. A source-degenerated transconductance stage was adopted in the CTLE, and source follower and shunt feedback resistor stages were adopted in the TIA. The proposed CTLE could achieve high frequencies by altering the tail current with fixed degenerate capacitance CS and resistance RS. The proposed AFE achieved high bandwidth, and the use of a feedback resistor Rf and inductor Lf improved its high-frequency performance. Simulation results revealed that the CTLE can compensate for 16 dB of channel loss at a 3 GHz Nyquist frequency and can open closed eyes in a 6 Gb/s non-return-to-zero signal with a bit error rate of 0.16 × 10−12 for a 231 − 1 pseudorandom binary sequence input. The AFE could compensate for 12 dB of channel loss at a 15 GHz Nyquist frequency and can open closed eyes in a 30 Gb/s PAM4 signal from a pseudorandom binary sequence input; it consumed 27 mW of power at 1.8 V.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call