Abstract

Tip decomposition is a crucial kernel for mining dense subgraphs in bipartite networks, with applications in spam detection, analysis of affiliation networks etc. It creates a hierarchy of vertex-induced subgraphs with varying densities determined by the participation of vertices in butterflies (2, 2-bicliques). To build the hierarchy, existing algorithms iteratively follow a delete-update (peeling) process: deleting vertices with the minimum number of butterflies and correspondingly updating the butterfly count of their 2-hop neighbors. The need to explore 2-hop neighborhood renders tip-decomposition computationally very expensive. Furthermore, the inherent sequentiality in peeling only minimum butterfly vertices makes derived parallel algorithms prone to heavy synchronization. In this paper, we propose a novel parallel tip-decomposition algorithm - REfine CoarsE-grained Independent Tasks (RECEIPT) that relaxes the peeling order restrictions by partitioning the vertices into multiple independent subsets that can be concurrently peeled. This enables RECEIPT to simultaneously achieve a high degree of parallelism and dramatic reduction in synchronizations. Further, RECEIPT employs a hybrid peeling strategy along with other optimizations that drastically reduce the amount of wedge exploration and execution time. We perform detailed experimental evaluation of RECEIPT on a shared-memory multicore server. It can process some of the largest publicly available bipartite datasets orders of magnitude faster than the state-of-the-art algorithms - achieving up to 1100× and 64× reduction in the number of thread synchronizations and traversed wedges, respectively. Using 36 threads, RECEIPT can provide up to 17.1× self-relative speedup.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call