Abstract

Graphene sponge (GS) is usually prepared by reducing graphene oxide for the adsorption of pollutants. Different reduction methods lead to different reduction degrees, but the relationship between reduction degree and adsorption performance is still unexplored. In this study, we prepared three GS samples of different reduction degrees and compared their adsorption properties for different dyes. Taking methylene blue (MB) as the model dye, the adsorption isotherms, kinetics and influencing factors were investigated. The adsorptions of different dyes on three GS samples were also compared. Our results indicated that the adsorption of MB on GS was inhibited at high reduction degree by reducing the electrostatic interaction between oxygen containing groups and MB molecules. The adsorption kinetics slowed down at lower reduction degree. The pH showed more significant influence for highly reduced GS, which should be assigned to the deprotonation of hydroxyl groups at high pH. Ionic strength had ignorable effect on the adsorption. Beyond that, the dye properties also regulated the adsorption. The implication to the design of better GS adsorbents based on reduction degree is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.