Abstract

This paper considers the temperature spectrum tracking control of microwave heating model, in the presence of asymmetrical input saturation, nonhomogeneous Neumann boundary condition and temperature-dependent permittivity. The sufficient condition for the existence of receding horizon H∞ guaranteed cost control is proposed based on the derived finite-dimensional ordinary differential equation (ODE) error model. Furthermore, by on-line updating and solving linear matrix inequalities (LMIs) optimization problem, the constrained tracking controller can be obtained in the sense of minimizing H∞ norm and satisfying the quadratic cost performance. The proposed control strategy is implemented on a one-dimensional cavity heating model and its performance is evaluated through the simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.