Abstract

Articulating cartilage experiences a multitude of biophysical cues. Due to its primary function in distributing load with near frictionless articulation, it is clear that a major stimulus for cartilage homeostasis and regeneration is the mechanical load it experiences on a daily basis. While these effects are considered when performing in vivo studies, in vitro studies are still largely performed under static conditions. Therefore, an increasing complexity of in vitro culture models is required, with the ultimate aim to recreate the articulating joint as accurately as possible. We have for many years utilized a complex multiaxial load bioreactor capable of applying tightly regulated compression and shear loading protocols. Using this bioreactor, we have been able to demonstrate the mechanical induction of human bone marrow stromal cell (BMSC) chondrogenesis in the absence of exogenous growth factors. Building on previous bioreactor studies that demonstrated the mechanical activation of endogenous TGFβ, and subsequent chondrogenesis of human bone marrow derived MSCs, we have been further increasing the complexity of in vitro models. For example, the addition of high molecular weight hyaluronic acid, a component of synovial fluid, culture medium leads to reduced hypertrophy and increased glycosaminoglycan deposition. The ultimate aim of all of these endeavors is to identify promising materials and therapies during in vitro/ ex vivo studies, therefore reducing the numbers or candidates that are finally tested using in vivo studies. This 3R approach can improve the opportunities for success while leading to more ethically acceptable product development pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.