Abstract

Changing land-use practices in northern Thailand have increased tillage intensity. This study re-assesses the rate of tillage erosion by manual hoeing on steep slopes (17–82%) in northern Thailand. Previously collected soil translocation data during an on-farm tillage erosion experiment and additionally collected data during an on-farm tillage erosion survey have been analysed whereby a new calculation method (i.e. trapezoid tillage step) has been used. A comparison with previously collected data indicates that the trapezoid tillage step method and the tracer method are the most reliable methods to assess downslope translocation by manual tillage. Based on newly acquired understanding of the processes involved, soil fluxes by tillage erosion are quantified by linear functions for different slope gradient classes rather than one single diffusion-type equation for the whole slope range. For slope gradients smaller than 3%, soil fluxes are close to zero as farmers do not have a preferred tillage direction. For slope gradients between 3% and 70%, soil is tilled only in the downslope direction and soil fluxes range between 16 and 67 kg m −1 tillage pass −1. On slopes with gradients in excess of 70%, the angle of repose for soil clods is often exceeded resulting in a sliding down of the complete tilled top layer. These data are used to assess the soil flux for complete cropping cycles for the most dominant cropping systems in the highlands of northern Thailand: i.e. upland rice, maize, (soy) beans, cabbage and ginger. The on-site effects of tillage erosion will be very pronounced if parcels are short with respect to their slope length, cultivated for upland rice or cabbage, or when weed pressure is high. Tillage erosion results in a tillage step with low soil fertility and low infiltration capacity. Solutions to reduce tillage erosion intensity depend on the degree that tillage intensity can be reduced. This might happen by an improved weed management or by changing landuse to perrenial cropping. Other strategies are concentrating nutrients on the truncated hillslope sections and retaining soil on the field by vegetative buffers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call