Abstract

Fisher information (FI) plays a crucial role in quantum precision measurement and entanglement detection. Recently two methods have been suggested to extract it from experimental data: Hellinger distance and Kullback–Leibler entropy. In this paper, an extensive investigation is considered with the help of a dichotomic measurement model. It is found that the general quadratic fitting for FI with both methods has two constraints: one is the critical visibility V0=2∕3, the other is the smallest δθ for the dichotomic measurement. To relax them, we propose the higher-order fitting (fourth order considered), by which a reasonable FI is obtained from recent optical experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.