Abstract

This paper deals with the intrinsic randomness (IR) problem, which is one of typical random number generation problems. In the literature, the optimum achievable rates in the IR problem with respect to the variational distance as well as the Kullback-Leibler (KL) divergence have already been analyzed. On the other hand, in this study we consider the IR problem with respect to a subclass of f-divergences. The f-divergence is a general non-negative measure between two probabilistic distributions and includes several important measures such as the total variational distance, the $\chi^{2}-$divergence, the KL divergence, and so on. Hence, it is meaningful to consider the IR problem with respect to the f-divergence. In this paper, we assume some conditions on the f-divergence for simplifying the analysis. That is, we focus on a subclass of f-divergences. In this problem setting, we first derive the general formula of the optimum achievable rate. Next, we show that it is easy to derive the optimum achievable rate with respect to the variational distance, the KL divergence, and the Hellinger distance from our general formula.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.