Abstract
Building S-scheme heterostructures is a sophisticated approach to receiving outstanding catalysts for environmental detoxification. Herein, ternary CuO/Cd0.5Zn0.5S/Bi5O7I (CO/CZS/BOI) nanocomposites were constructed by in-situ decorating of CuO and Cd0.5Zn0.5S nanoparticles onto Bi5O7I micro-sphere in a facile route. The optimal CO/CZS/BOI reflected reinforced bisphenol A (BPA) photo-oxidation (95% in 70 min) and Cr(VI) photo-reduction (96.6 in 60 min) under visible light. Besides, CO/CZS/BOI afforded 5.10 (4.44), 4.42 (3.71), and 6.60 (5.27) fold reinforcement in the BPA (Cr(VI)) photo-reaction rate compared to BOI, CZS, and CO, respectively. This behavior was linked to the development of S-scheme mechanisms resulting from the co-effects of BOI, CZS, and CO in retaining the optimum redox capacity, facilitating the dissolution of photo-carriers, increasing reactive sites, and strengthening the visible-light response. The parameters influencing the catalytic reaction of CO/CZS/BOI, such as light intensity, catalyst dosage, and pH, were deeply studied. The quenching tests declared the prominent roles •O2− and •OH in the breaking down of BPA and the participation of electrons and •O2− in the photocatalytic conversion of Cr(VI). The cyclic tests verified the robust photostability of CO/CZS/BOI, which is associated with the reintegration process between the free h+ coming from CZS and the photo-induced e– of CO and BOI in the S-scheme system. In conclusion, the present study provides a profound understanding of the photo-reaction mechanism of CO/CZS/BOI and introduces a novel concept for constructing a superior dual-Scheme system for efficient wastewater detoxification.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have