Abstract

Remote structural health monitoring systems employing a sensor-based quantitative assessment of in-service demands and structural condition are perceived as the future in long-term bridge management programs. However, the data analysis techniques and, in particular, the technology conceived years ago that are necessary for accurately and efficiently extracting condition assessment measures from highway infrastructure have just recently begun maturation. In this study, a large-scale wireless sensor network is deployed for ambient vibration testing of a single-span integral abutment bridge to derive in-service modal parameters. Dynamic behavior of the structure from ambient and traffic loads was measured with accelerometers for experimental determination of the natural frequencies, damping ratios, and mode shapes of the bridge. Real-time data collection from a 40-channel single network operating with a sampling rate of 128 Hz per sensor was achieved with essentially lossless data transmission. Successful acquisition of high-rate, lossless data on the highway bridge validates the proprietary wireless network protocol within an actual service environment. Operational modal analysis is performed to demonstrate the capabilities of the acquisition hardware with additional correlation of the derived modal parameters to a Finite Element Analysis of a model developed using as-built drawings to check plausibility of the mode shapes. Results from this testing demonstrate that wireless sensor technology has matured to the degree that modal analysis of large civil structures with a distributed network is a currently feasible and a comparable alternative to cable-based measurement approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call