Abstract

Adaptive tracking-by-detection methods have been widely studied with promising results. These methods first train a classifier in an online manner. Then, a sliding window is used to extract some samples from the local regions surrounding the former object location at the new frame. The classifier is then applied to these samples where the location of sample with maximum classifier score is the new object location. However, such classifier may be inaccurate when the training samples are imprecise which causes drift. Multiple instance learning (MIL) method is recently introduced into the tracking task, which can alleviate drift to some extent. However, the MIL tracker may detect the positive sample that is less important because it does not discriminatively consider the sample importance in its learning procedure. In this paper, we present a novel online weighted MIL (WMIL) tracker. The WMIL tracker integrates the sample importance into an efficient online learning procedure by assuming the most important sample (i.e., the tracking result in current frame) is known when training the classifier. A new bag probability function combining the weighted instance probability is proposed via which the sample importance is considered. Then, an efficient online approach is proposed to approximately maximize the bag likelihood function, leading to a more robust and much faster tracker. Experimental results on various benchmark video sequences demonstrate the superior performance of our algorithm to state-of-the-art tracking algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.