Abstract

Abstract In the battery management system (BMS), the state of charge (SOC) is a very influential factor, which can prevent overcharge and over-discharge of the lithium-ion battery (LIB). This paper proposed a battery modeling and online battery parameter identification method based on the Thevenin equivalent circuit model (ECM) and recursive least squares (RLS) algorithm with forgetting factor. The proposed model proved to have high accuracy. The error between the ECM terminal voltage value and the actual value basically fluctuates between ±0.1 V. The extended Kalman filter (EKF) algorithm and the unscented Kalman filter (UKF) algorithm were applied to estimate the SOC of the battery based on the proposed model. The SOC experimental results obtained under dynamic stress test (DST), federal urban driving schedule (FUDS), and US06 cycle conditions were analyzed. The maximum deviation of the SOC based on EKF was 1.4112–2.5988%, and the maximum deviation of the SOC based on UKF was 0.3172–0.3388%. The SOC estimation method based on UKF and RLS provides a smaller deviation and better adaptability in different working conditions, which makes it more implementable in a real-world automobile application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call