Abstract

ABSTRACTReal-time queue length information at signalized intersections is useful for both performance evaluation and signal optimization. Previous studies have successfully examined the use of high-resolution event-based data to estimate real-time queue lengths. Based on the identification of critical breakpoints, real-time queue lengths can be estimated by applying the commonly used shockwave model. Although breakpoints can be accurately identified using lane-by-lane detection, few studies have investigated queue length estimation using single-channel detection, which is a common detection scheme for actuated signal control. In this study, a breakpoint misidentification checking process and two input-output models (upstream-based and local-based) are proposed to address the overestimation and short queue length estimation problems of breakpoint-based models. These procedures are integrated with a typical breakpoint-based model framework and queue-over-detector identification process. The proposed framework was evaluated using field-collected event-based data along Speedway Boulevard in Tucson, Arizona. Significant improvements in maximum queue length estimates were achieved using the proposed method compared to the breakpoint-based model, with mean absolute errors of 35.7 and 105.6 ft., respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call