Abstract
Wireless sensor technologies can provide the leverage needed to enhance patient-caregivers collaboration through ubiquitous access and direct communication, which promotes smart and scalable vital sign monitoring of the chronically ill and elderly people live an independent life. However, the design and operation of BASNs are challenging, because of the limited power and small form factor of biomedical sensors. In this paper, an adaptive compression technique that aims at achieving low-complexity energy-efficient compression subject to time delay and distortion constraints is proposed. In particular, we analyze the processing energy consumption, then an energy consumption optimization model with constraints of distortion and time delay is proposed. Using this model, the Personal Data Aggregator (PDA) dynamically chooses the optimal compression parameters according to real-time measurements of the packet delivery ratio (PDR) or individual users. To evaluate and verify our optimization model, we develop an experimental testbed, where the EEG data is sent to the PDA that compresses the gathered data and forwards it to the server which decompresses and reconstructs the original signal. Experimental testbed and simulation results show that our adaptive compression technique can offer significant savings in the delivery time with low complexity and without affecting application accuracies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.