Abstract
Challenges from the uncontrolled environments are the main difficulties in making hand gesture recognition methods robust in real-world scenarios. In this paper, we propose a real-time and purely vision-based method for hand gesture recognition in uncontrolled environments. A novel tracking method is introduced to track multiple hand candidates from the first frame. The movement directions of all hand candidates are extracted as trajectory features. A modified HCRF model is used to classify gestures. The proposed method can survive challenges including: gesturing hand out of the scene, pause during gestures, complex background, skin-coloured regions moving in background, performers wearing short sleeve and face overlapping with hand. The method has been tested on Palm Graffiti Digits database and Warwick Hand Gesture database. Experimental results show that the proposed method can perform well in uncontrolled environments.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have