Abstract

AbstractThe migration of groundwater in rock and soil can appear as abnormalities in geoelectric fields. It is therefore important to study the characteristics of seepage in porous media by measuring the geoelectric field signatures. In this study, a physical model with layers of sand and clay was constructed and an electrical resistivity meter was used to examine the changes in the geoelectric field parameters during the infiltration process. The results show that the infiltration could be detected based on the geoelectric signatures including temporal changes through the spontaneous potential, excitation currents, and apparent resistivity. Specifically, the spontaneous potential was reduced by 100 to 200 mV when the water reaches an electrode. During the second water injection in the experiment, the measured spontaneous potential of all the electrodes recovered to the previous extreme values that range from −200 to −550 mV, thus indicating a “memory” effect. With stepwise changes in the excitation current, it was possible to determine the seepage velocity in sand and clay layer. The apparent resistivity is reduced to less than 400 Ωm when the infiltration reaches the electrodes. These results indicate the potential for real‐time monitoring of water flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.