Abstract

Modeling cloth with fiber-level geometry can produce highly realistic details. However, rendering fiber-level cloth models not only has a high memory cost but it also has a high computation cost even for offline rendering applications. In this paper we present a real-time fiber-level cloth rendering method for current GPUs. Our method procedurally generates fiber-level geometric details on-the-fly using yarn-level control points for minimizing the data transfer to the GPU. We also reduce the rasterization operations by collectively representing the fibers near the center of each ply that form the yarn structure. Moreover, we employ a level-of-detail strategy to minimize or completely eliminate the generation of fiber-level geometry that would have little or no impact on the final rendered image. Furthermore, we introduce a simple yarn-level ambient occlusion approximation and self-shadow computation method that allows lighting with self-shadows using relatively low-resolution shadow maps. We demonstrate the effectiveness of our approach by comparing our simplified fiber geometry to procedurally generated references and display knitwear containing more than a hundred million individual fiber curves at real-time frame rates with shadows and ambient occlusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.