Abstract

Detroit Diesel Corporation (DDC) and ORNL established this CRADA to improve heavy-duty engine efficiency with reduced emissions at relatively extreme operating regimes such has high EGR, low-load, and cold-start, with an emphasis on the application of advanced control strategies. The approach used in this collaborative effort was to include the application of novel analysis and modeling techniques devel-oped from the application of nonlinear dynamics and chaos theory. More specifically, analytical tech-niques derived from these theories were to used to detect, characterize, and control the combustion insta-bilities that are responsible for poor combustion performance and corresponding high emissions. The foundation of this CRADA was established based on ORNL expertise on the fundamentals of ad-vanced combustion operation and experience with nonlinear dynamics and controls in combustion sys-tems. The initial plan was all data generation would be performed at DDC with an agreed upon experi-mental plan formed by both organizations. While numerous experiments were performed at DDC and the data was exchanged with ORNL researchers, the team decided to transfer an engine to ORNL to allow more flexibility and data generation opportunities. A prototype DDC Series 60 with a common rail fuel system was selected and installed at ORNL. DDC and ORNL maintainedmore » a strong collaboration throughout much of this project. Direct funding from DOE ended in 2004 and DDC continued to fund at a reduced amount through 2007. This CRADA has not been funded in more recent years but has been maintained active in anticipation of restored funding. This CRADA has led to additional collaborations between DDC and ORNL.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call