Abstract
Detroit Diesel Corporation (DDC) and ORNL established this CRADA to improve heavy-duty engine efficiency with reduced emissions at relatively extreme operating regimes such has high EGR, low-load, and cold-start, with an emphasis on the application of advanced control strategies. The approach used in this collaborative effort was to include the application of novel analysis and modeling techniques developed from the application of nonlinear dynamics and chaos theory. More specifically, analytical techniques derived from these theories were to used to detect, characterize, and control the combustion instabilities that are responsible for poor combustion performance and corresponding high emissions. The foundation of this CRADA was established based on ORNL expertise on the fundamentals of advanced combustion operation and experience with nonlinear dynamics and controls in combustion systems. The initial plan was all data generation would be performed at DDC with an agreed upon experimental plan formed by both organizations. While numerous experiments were performed at DDC and the data was exchanged with ORNL researchers, the team decided to transfer an engine to ORNL to allow more flexibility and data generation opportunities. A prototype DDC Series 60 with a common rail fuel system was selected and installed at ORNL. DDC and ORNL maintainedmore » a strong collaboration throughout much of this project. Direct funding from DOE ended in 2004 and DDC continued to fund at a reduced amount through 2007. This CRADA has not been funded in more recent years but has been maintained active in anticipation of restored funding. This CRADA has led to additional collaborations between DDC and ORNL. The objectives are to: (1) Explore and establish boundaries of high efficiency clean combustion (HECC) modes on a DDC heavy-duty diesel engine; (2) Improve fundamental understanding of combustion instabilities for use in the development of predictive controls and diagnostics; and (3) Develop and evaluate potential control strategies for enabling and/or expanding HECC operation on a multi-cylinder diesel engine.« less
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.