Abstract
The rate of overflow and disappearance of dopamine from the extracellular fluid of the rat striatum has been measured during neuronal stimulation. Overflow of dopamine was induced by electrical stimulation of the medial forebrain bundle with biphasic pulse trains. The instantaneous concentration of dopamine was measured with a Nafion-coated, carbon fiber microelectrode implanted in the brain. The measurement technique, fast-scan cyclic voltammetry, samples the concentration of dopamine in < 10 ms at 100 ms intervals. Identification of dopamine is made with cyclic voltammetry. Stimulated overflow was measured as a function of electrode position, stimulation duration, stimulation frequency, and after administration of l-DOPA and nomifensine. The observed concentration during a 2-s, 60-Hz stimulation was found to alter with position of the carbon fiber electrode. For stimuli of 3 s or less the amount of overflow was found to be a linear function of stimulus duration at a fixed electrode position. The observed overflow was found to be steady-state at a frequency of 30 Hz. suggesting a balance between uptake and synaptic overflow under these conditions. The experimental data was found to be successfully modelled when the balance of uptake and stimulated overflow was considered. It was assumed that each stimulus pulse releases a constant amount of dopamine (125 nM), and that uptake follows a Michaelis Menten model for a single uptake site with K m = 200nM and V max= 5μM/s. The increase in stimulated overflow observed after l-DOPA (250 mg/kg) could be modelled by a 1.6-fold increase in the amount of dopamine release with no alteration of the uptake parameters. The increase in stimulated overflow after nomifensine (2 or 20 mg/kg), a competititve inhibitor of uptake, could be modelled by an increase in K m In addition, the fit of the modelled data to the experimental data was improved when diffusion from the release and uptake sites was considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.