Abstract

Real-time seizure onset detection has been an active area of research in the study of epilepsy. Electroencephalography (EEG) measurements are widely used in seizure detection due to their high temporal resolution, cost-effective, and noninvasive nature. Various approaches based on machine learning are used for epileptic seizure detection, but these approaches do not explicitly reveal the underlying dynamics, require larger datasets for training, and are computationally demanding. Although high-frequency oscillations (HFOs) are the new biomarkers of epilepsy, they cannot be used with the existing data acquisition systems as they require high sampling rates and high cutoff frequency of the used filters. In this article, we present a novel approach for real-time seizure detection using high spatial frequencies. Since eigenvalues of the graph Laplacian represent spatial frequencies, we conjecture that higher eigenvalues and eigenvectors will contain the detailed information of seizure and non-seizure brain states. Hence, we have formed sub-band characteristic response vector (sub-band CRV) using weighted sum of eigenvectors corresponding to higher spatial frequencies and analyzed it over time. We have used a publicly available dataset to demonstrate the efficacy of the proposed approach. We observed that the proposed approach performs satisfactorily well in real-time automated seizure detection without requiring any kind of prior training. Moreover, our approach is not only accurate in seizure detection but also is independent of sampling rates, hence can be implemented easily in clinical realm for developing an automated seizure detection tool with the existing data acquisition systems operating at low sampling rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.