Abstract
The relaxation of hot electrons in semiconductors is pivotal for both energy harvesting processes and optoelectronics. Utilizing a self-developed non-adiabatic molecular dynamics simulation approach in the momentum space (NAMD_k), we have examined the dynamics of hot electrons in silicon. Whether excited from the Γ or L point, the relaxation dynamics exhibit two distinct stages. Initially, within 100 fs, electrons scatter with phonons throughout the Brillouin zone. Subsequently, over a few picoseconds, they further relax toward the conduction band minimum as a whole. This picture of hot electron relaxation is highly consistent with the quasi-equilibrium hot electron ensemble (HEE) concept. Throughout the hot electron relaxation process, energy transfer to phonons is efficient, leading to time-dependent phonon excitation, which is thoroughly analyzed. This investigation provides a novel perspective on hot electron relaxation in silicon, which holds substantive implications for the realm of photovoltaic and optoelectronic device applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.