Abstract

For 3D imaging and shape measurement, simultaneously achieving real-time and high-accuracy performance remains a challenging task in practice. In this paper, a fringe-projection-based 3D imaging and shape measurement technique using a three-chip liquid-crystal-display (3LCD) projector and a deep machine learning scheme is presented. By encoding three phase-shifted fringe patterns into the red, green, and blue (RGB) channels of a color image and controlling the 3LCD projector to project the RGB channels individually, the technique can synchronize the projector and the camera to capture the required fringe images at a fast speed. In the meantime, the 3D imaging and shape measurement accuracy is dramatically improved by introducing a novel phase determination approach built on a fully connected deep neural network (DNN) learning model. The proposed system allows performing 3D imaging and shape measurement of multiple complex objects at a real-time speed of 25.6fps with relative accuracy of 0.012%. Experiments have shown great promise for advancing scientific and engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.