Abstract

In industrial measurements and online monitoring, full-field and high-efficiency deformation analysis has been increasingly important and highly demanded in recent years. In this paper, a fast three-dimensional digital image correlation (3D-DIC) method was proposed to implement real-time measurement. Two improvements were suggested to accelerate the computation speed without sacrificing the accuracy. First, an efficient inverse compositional Gauss-Newton (IC-GN) algorithm was developed to avoid redundant computation. Moreover, a seed point-based parallel method was extended for 3D-DIC to achieve parallel computation and faster convergence speed. The detailed process of the real-time measurement using the proposed method was also introduced. Benefiting from the efficient IC-GN algorithm and parallel processing software we developed, full-field, real-time 3D deformation monitoring was realized at a frame rate of 10 frames/s with resolution of 5000 points per frame. For validation, the displacement field of a four-point bending beam was determined by the real-time 3D-DIC. As an application, the real-time human pulse diagnosis was also performed based on the presented technique. Experimental results verify that the proposed real-time 3D-DIC is practicable and effective for traditional Chinese medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.