Abstract

Thermoelectrics have great potential for use in waste heat recovery to improve energy utilization. Moreover, serving as a solid-state heat pump, they have found practical application in cooling electronic products. Nevertheless, the scarcity of commercial Bi2Te3 raw materials has impeded the sustainable and widespread application of thermoelectric technology. In this study, we developed a low-cost and earth-abundant PbS compound with impressive thermoelectric performance. The optimized n-type PbS material achieved a record-high room temperature ZT of 0.64 in this system. Additionally, the first thermoelectric cooling device based on n-type PbS was fabricated, which exhibits a remarkable cooling temperature difference of ~36.9 K at room temperature. Meanwhile, the power generation efficiency of a single-leg device employing our n-type PbS material reaches ~8%, showing significant potential in harvesting waste heat into valuable electrical power. This study demonstrates the feasibility of sustainable n-type PbS as a viable alternative to commercial Bi2Te3, thereby extending the application of thermoelectrics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call