Abstract
The Talbot effect is a near-field diffraction effect that occurs in periodic structures. In a circular periodic structure with a point source as incident light, it has been found that there is no self-imaging effect of the grating at a certain propagation distance. In this paper, we combine the conformal transformation with the Talbot effect and work out a special medium in the physical space, which allows the circular grating to have a Talbot effect within it. The refractive index distribution generated by conformal transformation is calculated and the corresponding self-imaging radius expression is obtained. Lumerical product is used for simulation verification, and the applicable condition of the method is summarized. We separately carry out the simulations of a circular grating with and without the designed medium. Light field distributions in the two simulations differ from each other. The light field in the second situation shares more similarities with the light field of a plane grating than the first simulation. What is more, in the second situation, we can work out a certain Talbot radius, and the light field distribution at the calculated Talbot radius is quite similar to that at the circular grating. But for the first situation, we cannot calculate a certain Talbot radius and can obtain only the radius of the ring with highest self-imaging accuracy by comparing light field at each distance with the grating structure. We find that the small period of the circular grating we used in the second situation makes the light field at Talbot radius furcate. So we carry out a third simulation of a circular grating with a large period compared with the incident wavelength. The self-imaging result matches the grating structure quite well. However, there are some limits in this method. According to the conformal transformation, the refractive index near the center tends to be infinite, so we have to remove the medium near the center. Also, when the radius is big enough, refractive index there can be smaller than 1, so the Talbot effect should happen within this radius. In conclusion, we show that the transformation optics can be introduced into the self-imaging of circular gratings, and thus greatly expanding the range of applications for the Talbot effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.