Abstract

Ni-rich layered lithium transition metal oxides are promising cathode materials for the next generation high energy density lithium ion batteries. However, high Ni content leads to severe side reactions at cathode/electrolyte interface, coupled with mechanical disintegration significantly degrading the electrochemical performance and safety. Surface coating and grain boundary (GB) engineering can respectively protect surface layer and suppress cracking issue, but direct comparisons of the individual effect of the two methods at different cycling conditions has not been fully explored. Moreover, the two methods have never been coupled together previously, let alone their coupling effect. Herein, we take LiNi0·8Mn0·1Co0·1O2 as a model material and utilize atomic layer deposition coating and annealing protocol to demonstrate the individual and coupling effects of surface coating and GB engineering on cycling stability. GB engineering is found to be more effective than surface coating in enhancing cycling stability due to suppressed intergranular cracks. Promisingly, coupling GB engineering and surface coating, we can achieve superior cycle stability even upon high voltage cycling (91% retention after 200 cycles at 2.7–4.7 V), which demonstrates the importance to simultaneously alleviate surface degradation and bulk disintegration in design of advanced cathode materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.