Abstract

Double Dirac fermions have recently been identified as possible quasiparticles hosted by three-dimensional crystals with particular non-symmorphic point group symmetries. Applying a combined approach of ab-initio methods and dynamical mean field theory, we investigate how interactions and double Dirac band topology conspire to form the electronic quantum state of Bi$_2$CuO$_4$. We derive a downfolded eight-band model of the pristine material at low energies around the Fermi level. By tuning the model parameters from the free band structure to the realistic strongly correlated regime, we find a persistence of the double Dirac dispersion until its constituting time reveral symmetry is broken due to the onset of magnetic ordering at the Mott transition. We analyze pressure as a promising route to realize a double-Dirac metal in Bi$_2$CuO$_4$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.