Abstract
In both normal and fast wireless electric vehicle charging systems, constant current/constant voltage (CC/CV) charging profile, regardless of the variation of the battery state of charge, is one of the most essential characteristics to ensure the battery performance and reliability. The input zero phase angle (ZPA) is able to minimize the system volt-ampere rating, enhance the power transfer capability, and make it easy to achieve soft-switching operation over the full range of battery charging profile. Therefore, the load-independent CC and CV output characteristics with ZPA conditions are necessary for wireless charging systems. However, the existing methods that can achieve these functions either add power switches or need a large number of compensation components, which make the system inefficient, uneconomical, and bulky. In this paper, a unified resonant tuning configuration with minimum passive component counts is proposed to achieve CC and CV outputs at two ZPA operating frequencies. According to the proposed configuration, all the possible inductive power transfer (IPT) and capacitive power transfer (CPT) topologies are analogized. With these topologies, both CC and CV outputs with ZPA are achieved using a minimum number of compensation components and no additional power switches. Among all the simplest IPT topologies, a primary Series-secondary Series and Parallel (S-SP) compensation topology is illustrated to demonstrate the analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.