Abstract
In the recent years, many-core platforms have emerged to boost performance while meeting tight power constraints. Per-core Dynamic Voltage and Frequency Scaling (DVFS) maximizes energy savings and meets the performance requirements of a given workload. Given a limited number of I/O pins and the need for finer control of voltage and frequency settings per core, there is a substantial cost in using off-chip voltage regulators. Consequently, there has been increased attention on the use of on-chip voltage regulators (OCVR) in many-core systems. However, integrating OCVRs comes at a cost of reduced power conversion efficiency (PCE) and increased complexity in the power delivery network and management of the OCVRs. In this paper, the effect of PCE on the thread-to-core mapping algorithm is investigated and the importance of the PCE-aware mapping scheme to optimize energy-efficiency is highlighted. Based on the results, up to 38% more energy savings is achieved as compared to PCE-agnostic algorithms. Moreover, the impact of core clustering granularity and process variation on the total efficiency of the system is explored. When relaxing the energy constraints by just 10%, an effective mapping reduces the complexity of the power delivery system by allowing the use of a significantly smaller number of voltage regulators, as compared to per-core OCVR. The results provided in the paper indicate an important opportunity for system and circuit co-design to implement energy-efficient and complexity-effective platforms for a target workload.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.