Abstract

Perfect absorbers play crucial roles in optical functional devices. Among various types of absorbers, moth-eye structures are known for their excellent absorbing efficiency. In this paper, we apply an electromagnetic multipole expansion method to treat an isolated all-dielectric moth-eye structure as a large particle and calculate various electric and magnetic multipole modes within the moth-eye structure. In periodical array, the multipole modes within each particle interact with each other. These constructive or destructive interactions cause shifts in the multipole resonant peaks. The multipole modes inside the particle array introduce reflecting peaks for loss-less materials. The absorption enhancement inside moth-eye structures can be attributed to the electric field enhancement resulting from these electric and magnetic multipole modes. Based on our theoretical study, we propose a near-ideal selective absorber based on moth-eye array, which achieves near 100% absorption within wavelength range from 400 nm to 1500 nm while achieving near 0% absorption over about 1700 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.