Abstract
Anti-reflection (AR) is very important for high-throughput optical elements. The durability against cooling is required for the AR structure in the cryogenic optics used for mid-infrared astronomical instruments. Moth-eye structure is a promising AR technique strong against cooling. The silicon lens and grism with the moth-eye structure are being developed to make high-throughput elements for long-wavelength mid-infrared instruments. A double-sided moth-eye plano-convex lens (Effective diameter: 33 mm, Focal length: 188 mm) was fabricated. By the transmittance measurement, it was confirmed that its total throughput is 1.7± 0.1 times higher than bare silicon lenses in a wide wavelength range of 20{45 μm. It suggests that the lens can achieve 83±5% throughput in the cryogenic temperature. It was also confirmed that the moth-eye processing on the lens does not modify the focal length. As for the grism, the homogeneous moth-eye processing on blaze pattern was realized by employing spray coating for the resist coating in EB lithography. The silicon grism with good surface roughness was also developed. The required techniques for completing moth-eye grisms have been established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.