Abstract

We study the dispersion mechanism of Lieb mode excitations of both single and multi component ultra-cold atomic Bose gas, subject to a harmonic confinement through chirp management. It is shown that in some parameter domain, the hole-like excitations lead to the soliton's negative mass regime, arising due to the coupling between chirp momentum and Kohn mode. In low momenta region the trap considerably affects the dispersion of the grey soliton, which opens a new window to observe Lieb-mode excitations. Further, we extend our analysis to binary condensate, which yields usual shape compatible grey-bright soliton pairs. The inter-species interaction induces a shift in the Lieb-mode excitations, where the pair can form a bound state. We emphasize that the present model provides an opportunity to study such excitations in the low momenta regime, as well as the formation of bound state in binary condensate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.