Abstract

This work investigates and reports on the fabrication of a ZnO nanosheets/p-Si heterojunction energy harvester. The proposed nanostructure device exhibits two key functionalities: energy harvesting and memristive characteristics. This allows the device to perform multiple tasks. The ZnO nanostructure sheet was grown using a hydrothermal method. To minimize defect states at the electrode-substrate interface, an optimal phosphorus doping process was employed to achieve minimal substrate sheet resistance. Under an applied pushing force of 0.259 kgf, the energy harvester generated an output voltage and current of 0.5548 V and 44 μA, respectively. The proposed structure produces an output of 24.41 μW at 13 Hz for 2000 cycles. Investigation of the device's transfer characteristics revealed memristive behavior with an on/off ratio of 107. These findings suggest that the multifunctional ZnO nanosheets/p-Si electronic device reported here has promising potential for applications in the Internet of Things (IoT).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call