Abstract

The authors propose an optimization method based on local synthesis to fulfill the expected contact path (ECP) at mean contact point (M) of spiral bevel gears. The method is a combination of local synthesis, tooth contact analysis (TCA) and application of optimization. Machine-tool settings based on local synthesis are found and contact path (CP) on tooth surface is formed. TCA extracts the information from CP and transforms it to a projected CP (PCP) by rotation in a plane across gear axis. An objective function is established by contrasting ECP to PCP. A program in Matlab language is developed for the simulation of objective function optimization. A spiral bevel gear drive in aviation accessory gear box is used to prove the feasibility of the proposed method. It shows that the method is effective and does not affect transmission errors very much for the realization of ECP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call