Abstract

This paper investigates a novel nonrecursive tracking control law design for a class of nonlinear systems via dynamic output feedback. As the main contribution of this paper, a global nonrecursive tracking design procedure is first proposed to render a simple construction of a realizable output feedback control law, whose gain selections follow the conventional pole placement approach while the stability margin can be guaranteed via a sufficiently large scaling gain. By introducing a Lyapunov function which neglects the virtual controllers in essence, rigorous analysis is presented to ensure the global stability. In addition, finite-time and asymptotical tracking results can now be achieved within the same design framework whereas the tunable homogeneous degree plays as a key role. As another contribution, by proposing a saturated dynamic compensator, a less ambitious but practical control objective, namely semiglobal stability is achieved of the closed-loop system to relax the requirement of the restrictive growth conditions for global control design. Taking consideration of the case when system is subject to mismatched disturbances, a unified design and stability analysis framework shows that the practical tracking result can also be realized. A numerical example is provided to illustrate the effectiveness of the nonrecursive design and the simplicity of the proposed tracking control algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.