Abstract

Closed-loop optimization of epitaxial titanium nitride (TiN) thin-film growth was accomplished using metal-organic molecular beam epitaxy (MO-MBE) combined with a Bayesian machine-learning technique and reduced the required number of thin-film growth experiments. Epitaxial TiN thin films grown under the process conditions optimized by the Bayesian approach exhibited abrupt metal–superconductor transitions above 5 K, demonstrating a new approach to the efficient development of less-studied materials, such as transition metal nitrides. The combination of the thin-film growth technique and Bayesian approach is expected to pave the way toward accelerating the development of the automated operation of thin-film growth apparatuses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.