Abstract

Bismuth Selenide is a Tellurium free topological insulator in V-VI compounds with an excellent thermoelectric performance from room temperature to mid-temperature region. Herein, hydrothermally prepared polycrystalline Bi2AgxSe3 nanostructures have been reported for thermoelectric application. The crystal structure identification and morphology with the elemental presence were analyzed by XRD (X-ray diffraction), HR-SEM with EDS (High resolution scanning electron microscope with energy dispersive X-ray), and HR-TEM (High-resolution transmission electron microscope) measurements. The reduced lattice thermal conductivity and enhanced electrical transport properties synergistically boost the thermoelectric properties through the highly-dense stacking faults with the presence of dislocations. The IFFT (Inverse Fast Fourier Transform) pattern reveals the existence of stacking faults and dislocations. These highly dense stacking faults and dislocations act as active phonon scattering centers, which can contribute to effective phonon scattering resultsin extremely low lattice thermal conduction of 0.3 W/mK at 543 K. On the other hand, the involvement of phonon–phonon scattering primarily reduced the lattice thermal conductivity at elevated temperatures. In addition, phonon-carrier scattering was less compared to phonon–phonon scattering at elevated temperature region. Moreover, the enhancement of electrical conductivity and controlled reduction of the Seebeck coefficient plays a vital role in achieving the maximum power factor of 335 μW/mK2 at 543 K due to the energy filtering effect. The synergistic combination of low thermal conduction and the maximum power factor helps to achieve the high peak zT of 0.3 at 543 K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call