Abstract

A superlattice of strained Au-Si atomic wires is successfully fabricated on a Si surface. Au atoms are known to incorporate into the stepped Si(111) surface to form a Au-Si atomic wire array with both one-dimensional (1D) metallic and antiferromagnetic atomic chains. At a reduced density of Au, we find a regular array of Au-Si wires in alternation with pristine Si nanoterraces. Pristine Si nanoterraces impose a strain on the neighboring Au-Si wires, which modifies both the band structure of metallic chains and the magnetic property of spin chains. This is an ultimate 1D version of a strained-layer superlattice of semiconductors, defining a direction toward the fine engineering of self-assembled atomic-scale wires.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.