Abstract

The ground state property of a Au-induced atomic wire array on a stepped Si(553) surface with interesting 1D metallic bands was investigated. Electron diffraction and scanning tunneling microscopy reveal an intriguing coexistence of triple- and double-period lattice distortions at low temperature. Angle-resolved photoemission observes both the nearly 1/3- and 1/2-filled bands to gradually open energy gaps upon cooling. We explain these unusual findings as due to the occurrence of Peierls distortions of triple and double periods on the two different atomic-scale chain elements, respectively, within a single unit wire. The two Peierls distortions are suggested to have different transition temperatures and little lateral correlation between each other.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call