Abstract
Total-body (TB) Positron Emission Tomography (PET) is one of the most promising medical diagnostics modalities, opening new perspectives for personalized medicine, low-dose imaging, multi-organ dynamic imaging or kinetic modeling. The high sensitivity provided by total-body technology can be advantageous for novel tomography methods like positronium imaging, demanding the registration of triple coincidences. Currently, state-of-the-art PET scanners use inorganic scintillators. However, the high acquisition cost reduces the accessibility of TB PET technology. Several efforts are ongoing to mitigate this problem. Among the alternatives, the Jagiellonian PET (J-PET) technology, based on axially arranged plastic scintillator strips, offers a low-cost alternative solution for TBPET. The work aimed to compare five total-body J-PET geometries with plastic scintillators suitable for multi-organ and positronium tomography as a possible next-generation J-PET scannerdesign. We present comparative studies of performance characteristics of the cost-effective total-body PET scanners using J-PET technology. We investigated in silico five TB scanner geometries, varying the number of rings, scanner radii, and other parameters. Monte Carlo simulations of the anthropomorphic XCAT phantom, the extended 2-m sensitivity line source and positronium sensitivity phantoms were used to assess the performance of the geometries. Two hot spheres were placed in the lungs and in the liver of the XCAT phantom to mimic the pathological changes. We compared the sensitivity profiles and performed quantitative analysis of the reconstructed images by using quality metrics such as contrast recovery coefficient, background variability and root mean squared error. The studies are complemented by the determination of sensitivity for the positronium lifetime tomography and the relative cost analysis of the studiedsetups. The analysis of the reconstructed XCAT images reveals the superiority of the seven-ring scanners over the three-ring setups. However, the three-ring scanners would be approximately 2-3 times cheaper. The peak sensitivity values for two-gamma vary from 20 to 34cps/kBq and are dominated by the differences in geometrical acceptance of the scanners. The sensitivity curves for the positronium tomography have a similar shape to the two-gamma sensitivity profiles. The peak values are lower compared to the two-gamma cases, from about 20-28 times, with a maximum value of 1.66 cps/kBq. This can be contrasted with the 50-cm one-layer J-PET modular scanner used to perform the first in-vivo positronium imaging with a sensitivity of 0.06 cps/kBq. The results show the feasibility of multi-organ imaging of all the systems to be considered for the next generation of TB J-PET designs. Among the scanner parameters, the most important ones are related to the axial field-of-view coverage. The two-gamma sensitivity and XCAT image reconstruction analyzes show the advantage of seven-ring scanners. However, the cost of the scintillator materials and SiPMs is more than two times higher for the longer modalities compared to the three-ring solutions. Nevertheless, the relative cost for all the scanners is about 10-4 times lower compared to the cost of the uExplorer. These properties coupled together with J-PET cost-effectiveness and triggerless acquisition mode enabling three-gamma positronium imaging, make the J-PET technology an attractive solution for broad application inclinics.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have