Abstract

We consider supersymmetry breaking communicated entirely by the superconformal anomaly in supergravity. This scenario is naturally realized if supersymmetry is broken in a hidden sector whose couplings to the observable sector are suppressed by more than powers of the Planck scale, as occurs if supersymmetry is broken in a parallel universe living in extra dimensions. This scenario is extremely predictive: soft supersymmetry breaking couplings are completely determined by anomalous dimensions in the effective theory at the weak scale. Gaugino and scalar masses are naturally of the same order, and flavor-changing neutral currents are automatically suppressed. The most glaring problem with this scenario is that slepton masses are negative in the minimal supersymmetric standard model. We point out that this problem can be simply solved by coupling extra Higgs doublets to the leptons. Lepton flavor-changing neutral currents can be naturally avoided by approximate symmetries. We also describe more speculative solutions involving compositeness near the weak scale. We then turn to electroweak symmetry breaking. Adding an explicit \mu term gives a value for B\mu that is too large by a factor of order 100. We construct a realistic model in which the \mu term arises from the vacuum expectation value of a singlet field, so all weak-scale masses are directly related to m_{3/2}. We show that fully realistic electroweak symmetry breaking can occur in this model with moderate fine-tuning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call