Abstract
This paper describes a real-time vision-based blind spot warning system that has been specially designed for motorcycles detection in both daytime and nighttime conditions. Motorcycles are fast moving and small vehicles that frequently remain unseen to other drivers, mainly in the blind-spot area. In fact, although in recent years the number of fatal accidents has decreased overall, motorcycle accidents have increased by 20%. The risks are primarily linked to the inner characteristics of this mode of travel: motorcycles are fast moving vehicles, light, unstable and fragile. These features make the motorcycle detection problem a difficult but challenging task to be solved from the computer vision point of view. In this paper we present a daytime and nighttime vision-based motorcycle and car detection system in the blind spot area using a single camera installed on the side mirror. On the one hand, daytime vehicle detection is carried out using optical flow features and Support Vector Machine-based (SVM) classification. On the other hand, nighttime vehicle detection is based on head lights detection. The proposed system warns the driver about the presence of vehicles in the blind area, including information about the position and the type of vehicle. Extensive experiments have been carried out in 172 minutes of sequences recorded in real traffic scenarios in both daytime and nighttime conditions, in the context of the Valencia MotoGP Grand Prix 2009.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.