Abstract

With the rapid development of Industry 4.0, the industrial cyber-physical systems (ICPS) are expected to realize the digital sensing, automatic control, and refined management in smart factories. However, limited bandwidth resources and severe industrial interference make it difficult to meet the real-time and ultrahigh reliability in edge computing (EC)-based next-generation industrial automation networks. To tackle these challenges, in this article, we propose a real-time transmission optimization scheme to accelerate EC. First, we establish a hierarchical system model for smart manufacturing and automation scenarios. Then we present a power control optimization method based on noncooperative game to alleviate interference and reduce energy consumption. Finally, we propose a path optimization scheme based on Q-learning for low-latency and ultrahigh reliability transmission requirements. Extensive simulation results reveal that our proposals perform better in terms of transmission delay and packet-loss rate compared with traditional methods, and therefore, contributes to EC deployment in ICPS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.