Abstract

A novel image-reconstruction method is proposed for the processing of data acquired at random spatial positions. The images are reconstructed and updated in real time concurrently with the measurements to produce an evolving image, the quality of which is continuously improving and converging as the number of data points increases with the stream of additional measurements. It is shown that the images converge to those obtained with data acquired on a uniformly sampled surface, where the sampling density satisfies the Nyquist limit. The image reconstruction employs a new formulation of the method of scattered power mapping (SPM), which first maps the data into a three-dimensional (3D) preliminary image of the target on a uniform spatial grid, followed by fast Fourier space image deconvolution that provides the high-quality 3D image.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.