Abstract

Blow-outs occurred on offshore platform and associated fires have been recurrent during the previous few decades, and poses a potential safety hazard to humans, property and the surrounding environment. Although the real-time forecast based on deep learning have shown promise in the fields of fire modelling and hazardous area evaluations, jet fire spatio-temporal modelling has not yet undergone sufficient investigation in complex ocean engineering cases like offshore platforms. This research therefore proposes a deep learning-based framework for jet fire spatio-temporal probabilistic real-time forecast by developing the Hybrid-VB-ConvSTnn model, which integratesConvGRU and variational Bayesian inference. And the significant hyperparameters were locally optimized through sensitivity analysis and finally identified as Monte Carlo (MC) sampling number m = 100 and dropout probability p = 0.1. By performance comparison with different models, the Hybrid-VB-ConvSTnn model shows competitive spatio-temporal forecasting capabilities in terms of both real-time (Inference time = 0.83s) and accuracy (R2 = 0.982). Moreover, the Hybrid-VB-ConvSTnn model could provide the additional uncertainty inferences based on the probability density of the Bernoulli distribution, which avoids the inherent shortcomings of “overconfidence” for traditional point-estimate models and lends credibility to flame boundary identification. The proposed framework could support the digital twin-based fire emergency management on offshore platforms by more comprehensive and robust risk evaluation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.