Abstract
Recovery from tracking failure is essential in any simultaneous localization and tracking system. In this context, we explore an efficient keyframe-based relocalization method based on frame encoding using randomized ferns. The method enables automatic discovery of keyframes through online harvesting in tracking mode, and fast retrieval of pose candidates in the case when tracking is lost. Frame encoding is achieved by applying simple binary feature tests which are stored in the nodes of an ensemble of randomized ferns. The concatenation of small block codes generated by each fern yields a global compact representation of camera frames. Based on those representations we define the frame dissimilarity as the block-wise hamming distance (BlockHD). Dissimilarities between an incoming query frame and a large set of keyframes can be efficiently evaluated by simply traversing the nodes of the ferns and counting image co-occurrences in corresponding code tables. In tracking mode, those dissimilarities decide whether a frame/pose pair is considered as a novel keyframe. For tracking recovery, poses of the most similar keyframes are retrieved and used for reinitialization of the tracking algorithm. The integration of our relocalization method into a hand-held KinectFusion system allows seamless continuation of mapping even when tracking is frequently lost.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have