Abstract
In vitro real-time replication of three-dimensional, time-varying load profiles acting on human bones during physical activity can advance bone and implant testing protocols. This study aimed to develop a novel protocol for applying the three-dimensional, time-varying hip contact force while walking to a human femur specimen. The target force profile was obtained from the literature. A proximal femur from an elderly female donor was instrumented using ten rosette strain gages and tested using a custom-made hexapod robot. A load-control algorithm determined the robot position generating the target force at low frequency (0.0004 Hz). Five cycles of the robot position were played back at five intermediate frequencies up to real-time (0.04, 0.08, 0.16, 0.4, and 0.8 Hz). The hip reaction force, the length of the actuators (position), and cortical strains were compared. The error in the load-control force was 0.3 ± 4.2 N (mean ± SD). The last three force, position, and strain cycles varied by less than 1.1% for every frequency analyzed. Across frequencies, the force increased by 28% at 0.8 Hz as a logarithmic function of frequency (R2 = 0.98). The position and strain error linearly increased with frequency up to 0.4 Hz. The median position error and the interquartile range of the strain error reached 15% and 13% at 0.8 Hz. Changes of force and cortical strain at increasing frequencies were linearly related (R2 = 0.99). Therefore, the protocol developed can provide repeatable three-dimensional time-varying load profiles, although the comparison of the specimen deformation obtained across frequencies should be considered with care, particularly in the higher frequency range. This information supports the design of dynamic tests of bone and implants.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have